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Condensed degree-of-freedom (effective-mass) models are compared with large degree-
of-freedom finite-element models of a representative antenna-tipping and alidade struc-
ture, for both “locked” and “‘free-rotor” configurations. It is shown that: a) the effective-
mass models accurately reproduce the lower-mode natural frequencies of the finite
element model; b) frequency responses for the two types of models are in agreement up
to at least 16 rad/s for specific points; and c) transient responses computed for the same
points are in good agreement. It is concluded that the effective-mass model, which best
represents the five lower modes of the finite-element model, is a sufficient representation
of the structure for future incorporation with a total servo control-structure dynamic

simulation.

l. Introduction

The finite-element computer models of a typical large
antenna-tipping structure and alidade comprise many more
degrees of freedom, than can, or need be represented in a prac-
tical simulation of a combined structure and control-system
dynamic response. Consequently, a drastic reduction of the
structural finite-element model, to only a few equivalent
degrees of freedom, is a necessary and a common practice.
There are many known ways to achieve this reduction. Al-
though differing in details of implementation, each of these
ways are essentially equivalent in accurately representing only
the low-frequency vibration modes and ignoring higher fre-
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quencies that are presumed to be outside of the operational
control-system bandwidth.

The method of reduction used here is to represent each
low-frequency vibration mode by an equivalent spring-mass
single degree-of-freedom oscillator that is independent of the
other modal oscillators. The formulation, which is given in
Ref. 1, ensures that the reactions that result from independent
rigid body acceleration of the structure foundation are the
same for both the many degrees-of-freedom model and for the
corresponding equivalent oscillators. This formulation is
accomplished by matching the terms of the rigid-elastic modal
coupling matrices of both the full structural model and the



equivalent oscillator model that represents the same modes. It
can be shown that this condition also makes the kinetic energy
of each oscillator equal to that of the corresponding structural
mode for steady-state foundation motion. The inertia of
higher-frequency modes, not represented by spring-mass oscil-
lators, is contained in a residual mass placed at the foundation.
Consequently, the mass of the full structure is accounted for;
the approximation of this representation is only due to omit-
ting the elasticity of the higher-frequency modes not repre-
sented by additional individual oscillators. It follows that the
accuracy increases with larger numbers of effective oscillators.
In the limit, a large set of oscillators provides a mathematically
exact duplication of the dynamics of the original finite-
element model.

This reduction method is chosen because of its accuracy,
the simple representation it provides for the structure within
a complete structure-servo control dynamics simulation pro-
gram, and the ease of developing the effective oscillator prop-
erties. The equivalent oscillators are determined from special
output provided by the JPL-IDEAS program eigenvalue analy-
sis (Ref. 2). The output consists of a summary of the compu-
tations according to the algorithms of Ref. 1 for which princi-
pal relationships are restated and included here for reference
in Appendix A. A restriction, that the equivalent representa-
tion applies only to systems that have statically determinate
foundation reactions, is satisfied by the antenna structure.

Il. Structure Models

The azimuth-axis drive control of an example 34-m diam-
eter at the zenith position (elevation = 90°) will be considered.
The elevation-axis drive model is similar with respect to
representation of the tipping structure, but a separate treat-
ment is necessary for the alidade representation. Figure 1
shows a representative tipping structure and alidade. The
global Z-axis is the vertical axis. At zenith elevation, the
reflector local Z (pointing) axis coincides with the global axis
and at horizon elevation the local reflector Y-axis coincides
with the global Z-axis.

The effective mass oscillators are derived from a JPL-
IDEAS eigenvalue analysis of the finite-element model. The
structure is foundation-grounded at the alidade base. Since we
are concerned with the azimuth-axis drive, the only ground
motion of interest is the alidade rotation about the Z-axis and
the corresponding inertia term is the mass moment of inertia
about this axis. Consequently, the effective “mass” model
becomes an effective “mass moment of inertia” model with a
torsional, rather than linear, spring constant. In the following
discussions, references to “mass” and “‘inertia” will be used
interchangeably to imply the “mass moment of inertia.”

Figure 2(a) shows five effective mass oscillators that are
established after screening the lowest 16 natural vibration
modes found from the eigenvalue analysis. The screening elimi-
nated modes with insignificant azimuth rotation and reduced
the number of oscillators to the five that represent the first
through the fourth and the thirteenth modes of the con-
strained model. These oscillators are combined with the resid-
ual inertia of the remaining unrepresented natural modes and
with the azimuth gearbox springs. Motion of the alidade base
(point B} is allowed, and Fig. 2(a) represents a “locked rotor”
model grounded at the azimuth motor rotors. Figure 2(b) is
the “‘free rotor” model with unconstrained azimuth rotors
and with the reflected rotor inertia included at the two motor
points (M1 and M2). Each motor point is associated with the
azimuth drive consisting of the two moters and two gearboxes
at each of the two corners of the alidade base. The control-
system model transfer function for the effective-mass oscil-
lators is described in Appendix B.

The conventional normal coordinates of the associated
natural modes are related to the five effective oscillator coor-
dinates by easily determined individual scale factors. These
modal normal coordinates can be employed within the conven-
tional method of modal analysis (Ref. 3) as “combining
factors” that operate on the eigenvectors to synthesize the
dynamic displacement response of the finite-element model
by superposition. However, since the effective-mass coordi-
nates are relative to the alidade base, the displacement of the
base must be added to each displacement obtained from modal
superposition.

IIl. Numerical Results

Table 1 provides the inertia and stiffness properties of the
condensed models of Figs. 2(a) and 2(b). The five frequency
numbers tabulated are from the eigenvalue analysis of the
finite-element model grounded at the alidade base (no gear
box springs) and are a subset of the first sixteen modes, as
described previously. Notes in this table show how the residual
inertia is determined for the azimuth base point of the model,
and also show the calculations for reflected motor-rotor iner-
tias and gearbox springs.

A. Natural Frequencies

Table 2 shows comparisons of the natural frequencies ob-
tained from analysis of the models of Figs. 2(a) and 2(b), and
the 12 lowest modes obtained from analysis of 3700 degree-of-
freedom finite-element models that also contained the azimuth
gearbox springs and the free rotor reflected motor inertias.
There apparently is a spurious highest-mode frequency of the
equivalent models, but otherwise the agreement with the full
models ranges from excellent to good. The second mode
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(4.9 rad/s) free-rotor natural frequency is not significant and
represents a mode shape that consists essentially of the two
motor rotors moving in opposition. This mode would be
excited only in the case of a conflicting input command. Note
that the lowest-mode frequency of the full model for the free-
rotor case is almost, but not quite, equal to the ideal value of
zero. This is because at the time of this investigation the
IDEAS program did not accommodate a singular stiffness
matrix except by the artifice of including an almost zero stiff-
ness spring. More recently, however, a program update has
been provided to treat the singular condition. Figure 3 shows
a plot of the lowest 12 finite-element model natural frequen-
cies to facilitate comparison of the “locked” and “free” rotor
configurations. Where frequencies are almost the same for
either configuration, it can be assumed that the mode does not
entail significant rotation about the azimuth axis.

An additional NASTRAN program natural frequency analy-
sis was made for the “free-rotor” finite-element model for
comparison with the IDEAS “soft-spring” analysis. Table 3
shows the NASTRAN natural frequencies and repeats the
values from Table 2 that were obtained with IDEAS. The fre-
quencies compare well from the first through fifth modes and
also for the seventh and eighth modes. The generalized masses
computed for the eigenvectors of these same modes have also
been found to be similar. There is no eigenvalue agreement
after the eighth mode, and NASTRAN does not show several
of the lower frequencies (which have been identified as local
quadripod modes, found by IDEAS). Some differences be-
tween results of the two programs are expected because of
small differences in the stiffness matrix formulation for mem-
brane plate finite elements.

B. Steady-State Response

Forced steady-state frequency response calculations were
made for the effective-mass models of Figs. 2(a) and 2(b) and
also by conventional modal superposition analysis of the 12
lowest modes of complete finite-element models with gearbox
springs and motor rotors. Damping was assumed to be negligi-
ble in these calculations. The natural frequencies of all of
these models have been presented in Table 2.

The input to the “locked-rotor” models 1s a fixed ampli-
tude, variable frequency sinusoidal torque applied at the
alidade base. It can be shown that a similar dynamic response
will occur when the torque excitation is replaced by pre-
scribed equal sinusoidal displacements at the motor grounding
points. Figure 4 shows the “locked-rotor” steady-state re-
sponse for the alidade base ¢z, azimuth encoder ¢z, and
alidade ¢, at forcing frequencies of up to 16 radians per
second. The alidade response shown is defined as the rotation
of the line between the elevation-bearing support points at the
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top of the alidade. Four sets of data are shown on each of the
curves of Fig. 4: the full-model 12-mode response superposi-
tion computed by both the mode-displacement (M-D) and
mode-acceleration (M-A) methods (Ref. 3); the response of
the six degree-of-freedom (6 DOF) model of Fig. 2(a); and
the response of a model (2 DOF) similar to that of Fig. 2(a),
but with only one equivalent modal mass instead of five.

It can be seen that the full-model mode-acceleration meth-
od and the model of the responses of Fig. 2(a) are in agree-
ment. These responses also are assumed to be the most accu-
rate, based upon a check that can be made for zero forcing
frequency. The mode-displacement and mode-acceleration
methods’ responses appear to converge at higher frequencies.
The single effective-mass (2 DOF) model accuracy degenerates
at frequencies above the 10.7 rad/s lowest-mode resonance. At
forcing frequencies beyond the second mode resonance of
14.6 rad/s, this 2 DOF model is no longer valid.

The torque input to the “free-rotor”” models is an equal pair
applied at the two motors. The frequency response is shown in
Figs. 7 through 10. Figures 7 through 9 show the responses for
the same points as Figs. 4 through 6. Figure 10 shows the re-
sponse curve for either one of the same motor points that were
grounded for Figs. 4 through 6. The model 12-mode response
is computed only by the mode-displacement method. As in
Figs. 4 through 6, the response of the effective-mass model
(8 DOF) is identical to the full-model response to within the
scale of the figures. The response of a single effective-mass
model (4 DOF) compares in accuracy to the response of the
similar model (2 DOF) of Figs. 4 through 6. It is reassuring to
observe that the motor response exhibits the conventional
anti-resonances at the locked-rotor natural frequencies.

C. Transient Response

Transient responses of full structure and effective mass
models are shown in Figs. 11 and 12. The rigid body motion
of the free rotor models has been subtracted in Fig. 12. Time
histories are shown for impulse-type forcing functions that
consist of step torques of 0.02 seconds duration (instead of
the sinusoidal functions used in the frequency response analy-
sis in Figs. 4 through 10).

The solid lines in Figs. 11 and 12 are the responses for the
effective-mass models determined by the Advanced Continu-
ous Simulation Language (ACSL) program. The ACSL pro-
gram was used to solve the differential equations for the
models of Figs. 2(a) and 2(b) directly, although it could also
use transfer function inputs. The broken lines represent the
response superposition for the lowest 12 modes of the full
finite-element model, which were obtained by an in-house
program written for this purpose. In both “locked” and “free”
rotor models, damping of 0.5% was applied for the lowest



significant elastic modes (10.7 and 11.3 rad/s) and the damp-
ing for the higher modes increased (damping matrices were
proportional to stiffness matrices) in proportion to the natural
frequency.

The above figures typically show essentially similar wave
forms, although there are occasional differences in the ampli-
tude peaks. These differences tend to be restricted to the
initial half of the time histories. At the later times of the fig-
ures the full model and effective-mass model agreement
improves. The differences in the earlier portion of the time
histories is attributed to the presence of more higher-mode
frequency content in the full model, which becomes attenu-
ated later on by damping. Despite some differences in the
transient response curve, the transient response agreement of

the five effective modal-mass representations with the full
model response is estimated to be adequate.

IV. Summary

The lower-mode natural frequencies have been shown to be
identical in large finite-element models and condensed
effective-mass models. Furthermore, the control-system band-
pass cut-off frequency, usually less than about 2 rad/s, is
within the range of frequencies for which the effective-mass
models have shown good agreement with the full finite-
element models for steady-state response. Consequently, the
numerical results justify employing the effective-mass repre-
sentation within the control-structure simulation model.
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Table 1. Equivalent-mass model data

Mode* Simulated Inertia Stiffness
Point =~ ————————— in-Ibf-s? in-Ibf/rad
No. Rad/s x 1077 x 1079
1 1 13.59 3.686 6.808
2 2 15.71 0.186 0.429
3 3 15.26 1.486 3.458
4 4 15.90 0.725 1.831
5 13 35.53 3.652 46.090
Sum 9.734(1)
B Alidade base 3.878(®)
frame
M1 One drive corner 51.200® 12.800(¥
M2 One drive corner 51.200(3) 12.800(4)

Table 3. NASTRAN vs. IDEAS, finite-element model,
free-rotor natural frequencies

*In first 16 modes of finite-element model grounded at base frame.

Notes:

1. Total structure and parasitic inertia about azimuth
axis = 1.3612 X 108 in-Ibf/s?.

2. Residual inertia of B = 1.3612 X 108 - 9.734 x 107
=13.878 x 107 in-Ibf/sec?.

3. Inertia of one motor armature and gearbox = 0.0907 1bf- ft-sec?
at high speed = 0.0907 x 12 X (15. 339)2 =2.56 X 108 in-lbf- _sec?
at 1 X speed = 5.12 X 108 in-1bf sec? for 2 motors.

4. Spring constant, one gearbox = 0.963 X 107 at pinion
X (386.7” radius/15” wheel)? = 6.4 X 10 in-Ibf/rad of 1 X speed
=12.8 X 107 in-Ibf/rad for 2 boxes.

Tabile 2. Full and condensed modei natural
frequencies, rad/s

Natural frequencies, rad/s

Locked Rotor . Free Rotor
Finite- Equivalent Finite- Equivalent
element 6 DOF element 8 DOF
model model model model

(IDEAS) (RESPONMAP) (IDEAS) (RESPONMAP)

NASTRAN IDEAS
model model
Mode  Rads General — y1oge Radjs General
mass mass
1 0.00 2,592 1 0.11 2,589
2 4.88 11,393 2 4.89 11,380
3 11.32 103 3 11.28 103
4 14.89 272 4 14.67 119
5 15.51 129 5 15.10 113
6 20.39 23 6 15.75 22
7 21.99 124 7 21.88 114
8 23.68 715 8  23.05 651
9 2553 8
10 26.07 6
11 26.31 5
12 29.22 84
9 33.79 69
10 39.13 344
11 40.89 51
12 4151 299

1 10.70 10.71 0.17 0.00
2 14.64 14.65 4.89 4.99
3 15.10 15.21 11.28 11.28
4 15.74 15.74 14.67 14.67
5 19.00 22.05 15.10 15.21
6 19.10 55.12 15.75 15.74
7 21.70 21.88 22.23
8 23.05 23.05 55.15
9 25.54 25.53
10 26.05 26.07
11 26.37 26.31
12 29.65 29.22
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BACKUP STRUCTURE

REFLECTOR
SURFACE
PANELS
ELEVATION
1.7 # WHEEL
(34 m)
DIAMETER ELEVATION

DRIVE

LOCAL Z
(POINTING) AXIs

- § ELEVATION BEARING

)¢ T4

Nr=—r

SUBREFLECTOR

ALIDADE

QUADRIPOD

Fig. 1. Example antenna structure (34-m diameter)

(@ (b)
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8 SPRINGS 8

ALIDADE BASE,
FRAME, AND
gp%%és_/ RESIDUAL |NERTIA

2 MOTOR SPRINGS
PER MOTOR POINT

2 MOTOR INERTIAS
EACH POINT

Fig. 2. Equivalent-mass models: (a) locked rotor; (b) free rotor

45



LOCKED ROTOR FREE ROTOR ]
30 rad/s
29.65 —p—————— 29,22
26,37 —m ——— . 26,31
26.05 26.07
4 Hz 25.54 25.53
23,05 ——— — 93,05
21.70 ————J— 21.88
20 rad/s
3 Hz 19.10
19.00
15,74 15.75
15.10 15.10
14,64 — 14,67
2 Hz
10.70 11.28
10 rad/s
1 Hz
4.89
0 Hz 0.11 0rad/s

Fig. 3. Tipping and alidade structure natural frequencies, azimuth
model (reflector at 90° elevation)



ALIDADE ROTATION, ¢B, arc sec
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Fig. 4. Alidade base “locked-rotor” frequency response (K, = 2.5518 x 10" in-Ibf/rad)
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Fig. 5. Azimuth encoder “locked-rotor” frequency response (K, = 2.5518 x 10" in-Ibf/rad)



ALIDADE ROTATION, ¢A’ arc sec
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Fig. 6. Alidade “locked-rotor” frequency response (K, = 2.5518 x 10'* in-Ibt/rad)
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ALIDADE BASE ROTATION, ¢B’ arc sec
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Fig. 7. Alidade base ‘““free-rotor” frequency response (K, = 2.5518 x 10'? in-Ibf/rad)



AZIMUTH ENCODER ROTATION, ¢E, arc sec
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Fig. 8. Azimuth encoder “free-rotor” frequency response (K, = 2.5518 x 10'° in-Ibf/rad)

FREQUENCY, p, rad/s
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ALIDADE ROTATION, ¢A’ arc sec
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Fig. 9. Alidade ““free-rotor” frequency response (K, = 2.5518 x 100 in-lbf/rad)



MOTOR-DRIVE ROTATION, ¢M' arc sec
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Fig. 10. Motor “free-rotor” frequency response (K, = 2.5518 x 10'° in-Ibf/rad)
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ENCODER ROTATION, ¢E, arc sec BASE ROTATION, ¢B’ arc sec

ALIDADE ROTATION, ¢A’ arc sec
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Fig. 11. ACSL versus modal-superposition, “locked rotor”: (a) base; (b) encoder; (c) alidade
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Appendix A

Equivalent Oscillators Computations

The equations of motion of a linear, undamped elastic
structure are:

Mii+ Ku = f (A1)
{1 _%
u; = A2
1) 7] (42
in which

M = mass matrix

K = stiffness matrix

f = vector of forcing functions

u = set of all displacements

x = all displacements excluding the foundation

g = foundation displacements

When the structure has a statically determinate connection to
the foundation, the displacements can be expressed as a com-
bination «f elastic and rigid body terms, e.g.

X =Yy + ¢Rg (A'3)

in which the foundation displacement has, at most, six com-

ponents consisting of the three translations and three rotations”

that are listed in the following notation:
g = [ x gy gz ng gey g()z]

and

]

y = set of elastic displacements

¢g = rigid body transformation; depends only on the
geometry of nodes and the center of the foundation
rotation

Each six rows of ¢g correspond to the six degrees of free-

dom at each physical node of the structure model, and are of
the form:
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&) &) €) (€,) 6, &)
1 0 0 0 VA -Y'
. 0 1 0 -z 0 X'
typical 0 0 1 Y -x 0
ro‘}“;s o 0 0 1 0 0
R 0 0 0 0 1 0
0 0 0 0 0 1

where X', Y, and Z' are the difference in the X, Y, and Z
coordinates of the particular node and the center of the foun-
dation rotation.

In the special case of a structure model that omits rota-
tional degrees of freedom and contains only the three transla-
tions at each node, the last three rows of the above form are
omitted. Beyond this, the remainder of the following develop-
ment applies without other modifications.

For a structure with NV nodes, we can write ¢ as the fol-
lowing six column partitions

b = 1101 (0,1 10,} 19,3 18,3 19,1 (A4)

where the form of each column repeats the six row (or three
row, as explained) expression shown above.

Substituting Eq. (A-3) in Eq. (A-2), we have

X | N 10

yy 'R
(A-5)
g 0 Lg|le

in which I,y and Igg are identity matrices of the size of y and
of g.

From conventional synthesis of normal modes, the elastic
displacements are

y = ¢NE (A'6)

in which
¢y = matrix of eigenvectors (“modal matrix’’)

£ = vector of “normal” modal coordinates

By substituting Eq. (A-5) in Eq. (A-6), we have



X on PrLE A7)

g) |0 Iglle

By par..aoning Eq. (A-1) to conform with Eq. (A-7), mak-
ing that substitution, and considering only the mass matrix

Myy associated with the elastic displacements, we have

My, Ofon or (5] Ky K| % % g |1,
OOnggg KgnggOIggg fg
(A-8)

where Kyy, Kyg, Kgy, Kgg, f,, and fg are the conforming

partitions of the mass matrix and of the forcing function.

Equation (A-8) is premultiplied by the transpose

¢y O

[P o . (A9)

|_0 I,

with the result

yy . yy
o . T
¢R Myy ¢N I¢R Myy ¢R g
1
t t t
. on Ky On 1 O Ky Or tOn K] (£
______ |______.~____.____.
o, K. ¢y | o% K. ¢ + 0k K
R yy NI R Tyy "R R yg g
I
+ Kgy¢N|+ Kgg + Kgyd)R
t
oN fy
= -————— (A-10)
t
q)Rfy +fg

The second coefficient matrix on the left-hand side of Eq.
(A-10) can be significantly simplified. The simplification is
obtained by considering only cases of rigid body displacements
of the structure and foundation. In this case, all elastic dis-
placements and displacement derivatives are zero, and only the
foundation displacements can be non-zero. Then it can be

concluded, from the principle that forces and reactions are
zero for rigid body displacements, that only the upper-left par-
tition of this matrix is not null. Therefore, we can rewrite Eq.
(A-10) as

. ¢
My Meg [(6) [Knn Of(8) (o~
+ =
- t
Mpe Mggrilie 0 Oj(s bR fy + fg
(A-11)
in which

_ 4t . .
MNN = oy Myy Ono the elastic-structure generalized mass

matrix
Mgp = ¢;J Myy ¢R. the elastic-rigid coupling matrix
Mg = MER, the rigid-elastic coupling matrix
Mgg = (1){1 Myy P> the rigid-body mass matrix
Kan = ¢& LT the elastic-structure generalized stiff-

ness matrix

Note from the orthogonality of the normal modes, that My
and Ky are diagonal.

Equation (A-11), except for differences in notation and
ordering, is identical to Eq. (A-4) of the reference.

When a full set of the maximum of six independent foun-
dation displacements is considered, the elastic-rigid coupling
matrix Mgg has one row for each normal mode included and
one column for each of the six foundation displacements. A
specific row of Mggp corresponding to the 7™ normal mode
can be written as

- X y z v X y z N
Mg [M/ MY M M ]WJG] (A-12)

in which, for example
X t
My = 0y Myy 9,

where b;j is the jtP natural mode eigenvector and ¢, is the
first column of the column-partitioned form of ¢g, as de-
scribed following Eq. (A-3) and in Eq. (A-4). The remaining
righthand-side terms are computed similarly by substituting
the corresponding column of ¢ . Furthermore, the generalized
mass of the j'" normal mode follows from the definition of
the My matrix Eq. (A-11) as
- t
Myy; = Oy Myy S (A-13)
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The notation of Egs. (A-12) and (A-13) allows, as an exam-
ple, the following term to be defined:

2

My, = (M]?‘) /My Sem (M/’.‘) (A-14)

Obviously, five more terms (MEy/' Mg,j, Mggyj Mg, ,, and
Mpg,;), similar in form to Eq. (A-14), can be generated by
employing the second through sixth right-hand terms of Eq.
(A-12) to replace, in turn, the MY term of Eq. (A-14). Alge-
braic manipulations can show that forming the sum of the
absolute values of the first three terms generated this way
provides the /' mode equivalent (effective) mass as defined in

the reference. That is,

M 5 abs (M Ex].) +abs (M Ey,.) +abs (M Ez].) (A-15)

It can also be shown that the six terms, MExj through
Mp,;, are the reductions to the diagonals of the residual mass
matrix Mppg produced by the 7" normal mode. As a specific
example, the k'™ diagonal term of the residual mass matrix
when M normal modes are included is given by

M
Mggs (k k) = Mpg (k k) =) abs (M) (A-16)
j=1

where p = x, y, z, 6x, 0y, and 6z for k=1, 2,3,4,5,and 6,
respectively.

Evidently, if all natural modes are considered, the residual
mass matrix will be zero. Also, if a diagonal term of Mgpg is
relatively large in comparison with the same diagonal of Mgy,
most of the inertia is being treated as rigid, and very little of it
is being recognized as flexible. Nevertheless, such a representa-
tion could be appropriate if the M modes included adequately
cover the spectrum of the structure frequencies that could be
excited by the control system. Furthermore, if no normal
(elastic) modes are considered, the following equality holds:
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Mggs = M (A-17)

RR

When the mechanical control-system model is for an
azimuth-elevation antenna, we are concerned with, at most,
two rotational components of the foundation displacement
vector. As a specific example, say we are concerned only with
the azimuth-drive axis, which is identified here as the Z-axis.
Then, the pertinent foundation displacement is g, .. The sig-
nificant terms of the rigid body and residual mass matrices are
Mgpg (6,6) and Mggg (6,6). Of the six terms that can be gen-
erated on the form of Eq. (A-14), only the last term M, . is
needed. This latter term becomes the /*" mode equivalent iner-
tia which is employed instead of the equivalent mass of
Eq. (A-15).

The JPL-IDEAS computer program eigenvalue analysis per-
forms the following related operations:

(1) Computes eigenvalues, eigenvectors, and generalized
mass for the M user denoted lowest-frequency natural
modes.

(2) Computes the six components of Mg, (see Eq. A-14)
for each of the modes.

(3) Computes and tabulates the six reduction components
to the diagonals of the residual mass matrix (see Eq.
A-14) and equivalent mass (see Eq. A-15) for each
mode.

(4) Computes and prints the 6 x 6 rigid-body mass matrix
Mgy (see Eq. A-11).

(5) Computes and prints coordinates to locate the equiva-
lent effective mass of each mode. The computations
are not described here, but are consistent with formu-
lations shown in the reference paper.

(6) Lists the sum of reductions to each of the diagonals of
the residual mass matrix and the diagonals of the resid-
ual mass matrix for the M modes.



Appendix B

Transfer Function of Equivalent Modal
Inertia Structure Model

A complex elastic structure can be simply represented
within a mechanical control-system simulation model by the
“candelabra” diagram of Fig. B-1. Here the parallel branches
represent equivalent effective oscillators derived from the nor-
mal modes of the structure, and the stem represents physical
coordinates of the output pinion of the gearbox that drives the
system and of the motor that applies driving torques through
the gearbox. The remainder of the control system, which inter-
faces with the motor and pinion, does not permit such simple
generalization and is omitted from the figure.

The following notations are used in conjunction with
Fig. B-1:

q,; 4y = generalized elastic-effective modal coordinates
derived from the “locked-rotor” (fixed at
pinion) natural modes of the structure

~
~
1]

w = equivalent inertia of the effective coordinates

K,, ", K,, = equivalent stiffness of the effective coordinates
i i™ mode structure natural circular frequency
(Kl./.]i)l/2
8, = gearbox pinion coordinate

J, = gearbox inertia (includes residual inertia of
structure, which is the inertia not included in
J, throughJ, )

K = gearbox spring constant
0y = coordinate of motor (input end of gearbox)
Jyrr = motor inertia

The typical equation of motion for the i*" modal oscillator

is

Ja,*K, (q,-0,) =0, i=1,2, M (B-1)
The pinion equation of motion is
P+Z1<(0 —q)+ZK ( MTR)=0
(B-2)

in which it has been assumed that there are L. motors (with ge-
neric index, j) and gearboxes all attached to the same pinion.

The motor equation of motion is of the form

JMTRj GMTR]. +K. (BMTRI. - BP) + Control System Terms =

Motor Input Torque (B-3)

In Eqgs. (B-1), (B-2), and (B-3) we have assumed an un-
damped structure and gearbox ratios of unity. These are not
essential assumptions and are made here only to condense the
discussions.

It is convenient to recast the equations of motion into rela-

tive oscillator coordinates. To do this, let e be the coordinate
for the i*P oscillator relative to its base 6 That is

or (B-4)
q;, = e t0,
Then Eq. (B-1) becomes

JEtKe =-J0, i=12""M (BS)

Using the Laplace operator S, the associated transfer functions
become

2

e(S) = 8,(S) (B-6)

2
S%+ w2,
ni

Equation (B-2) can be written as

or (B-7)

so that the transfer function becomes
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0,(5) = -

M L
Z K e(S)+ Z K GMTR]. (5)- ZKG 0,(S)
=1

2
JPS

(B-8)

The inertia, spring constant, and natural frequency of each
e; is the effective value associated with the /*® normal mode. If
E[ is the normal coordinate of the i*" mode, it can be shown

(B-9)

where

and JG, is the generalized mass of the " mode, arbitrarily
normalized according to the normalization of the eigenvector.
Then let ¢, equal the value of the eigenvector of the encoder

60

in the it mode, and 6, equal the encoder displacement (in
physical coordinates). It then follows from conventional
modal analysis and the conversion here to relative coordinates
that

M
oE - Z i £§10p (B-10)
i=1
By introducing the new constants
AEi = ¢Ei 9 (B-11)
we have, from Egs. (B-9), (B-10), and (B-11),
M
6, =2 Age*0, (B-12)

A servo-block diagram equivalent to Fig. B-1 is shown in
Fig. B-2. This figure incorporates the relationships of Eqgs.
(B-6), (B-8), and (B-12), a non-unity gear ratio N, and four
independent drive motors.
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Fig. B-2. Servo-biock diagram: equivalent modal inertia transfer functions within motor gearbox drive system
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